

ADVANCED MATH CLASSES @ Think Academy, Najafgarh

Standard : XI Subject : Mathematics (041)

MCQ TEST-1

Maximum Marks : 45 Time Allowed : 1 Hour

All the Questions in this paper (from 01 to 45) carry 1 mark each. Select correct option in each of the questions.								
01.	Domain of $f(x) = \frac{1}{\sqrt{x}}$	$\frac{1}{x^2 - 5x - 6}$ is	G.					
	(a) \mathbb{R} (Real nos.)	(b) $\mathbb{R} - [-1, 6]$	(c) $\mathbb{R} - \{-1\}$	(d) $\mathbb{R} - \{-1, 6\}$				
02.	For $\frac{3(x-2)}{5} \ge \frac{5(2-x)}{3}$	(x) , $x \in$						
	(a) (∞,2]	(b) [2,∞)	(c) (−∞,2]	(d) $(\infty, 2)$				
03.	For $z = \left(\frac{3-4i}{1+i}\right)$, Re(z) equals							
	(a) $-\frac{1}{2}-\frac{7}{2}i$	(b) $\frac{1}{2}$	(c) $\frac{7}{2}$	(d) $-\frac{1}{2}$				
04.	{x : x is a two digit not (a) {10}, {01} both	umber so that the sum (b) {100}	of its digits is one} in t (c) {10}	he tabular form, is given by (d) {01}				
05.	If $ x \ge 3$, then $x \in$							
06	(a) $(-3,3)$	(b) [-3,3]	(c) $(-\infty, -3) \cup (3, \infty)$	(d) $(-\infty, -3] \cup [3, \infty)$				
06.	If $A = \{0\}$, then A is							
07	(a) null set If $A = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ on	(b) infinite set d $\mathbf{P} = \{5, 6, 7\}$ then r	(c) singleton set	(a) disjoint set				
07.	If $A = \{1, 2, 3, 4\}$ and	$\mathbf{u}, \mathbf{B} = \{3, 0, 7\}, \text{ then } \mathbf{I}$						
00	(a) 64 Exaction $f(x)$	(0) 81	(c) 4096	(a) 144				
08.	For the function $I(x)$	= [x], where [.] is gre	atest integer function,	the range of $f(x)$ is				
	(a) Z ⁺	(b) Z ⁻	(c) $[0,\infty)$	(d) Z				
09.	For $X = \{2, 4, 6\}$ and	$1 Y = \{1, 3, 6, 10, 15\},\$	X - Y =					
	(a) $\{2, 4\}$	(b) {2, 4, 6}	(c) $\{1, 3, 10, 15\}$	(d) 				
10.	$cosec(-1410^{\circ})$ equa	$cosec(-1410^{\circ})$ equals						
	(a) $-\frac{2}{\sqrt{3}}$	(b) $\frac{2}{\sqrt{3}}$	(c) 2	(d) -2				
11.	If $A = \{1, 2, 3\}$, $B = \{4, 5\}$ then, a relation R defined from A to B, having maximum no. of elements is given by							
10	(a) $B \times B$	(b) $A \times A$	(c) $A \times B$	$(d) B \times A$				
12.	For the sets $A = \{2, 3\}$	$B = \{4, 5, 6\}$, the tota	I number of relations f	rom A to B will be (1)				
10	(a) 64	(0) 16	(c) 512	(a) U				
13.	If $z = 1 - \sqrt{31}$ then, $ z $ equals							

MATHEMATICIA By O.P. GUPTA : A New Approach in Mathematics

Practice Paper for XI © Maths (041)

14	(a) 4 Let $\Delta - \beta 1 2 3$ B –	(b) -2	(c) 2	(d) ±2				
17.	Let $A = \{1, 2, 3\}$, $B = \{4, 3, 0\}$. For a relation $B' : B \rightarrow A$ defined as $B' = \{(x, y) : y \in B, y \in A : x \text{ is divisible by } y\}$ the							
	form is given by							
	(a) $\{(1,4),(2,4),(1,5)\}$	(1,6),(2,6),(3,6)	(b) $\{(4,1),(4,2),(5,1)\}$	$,(6,1),(6,2),(6,3)\}$				
	(c) $\{(4,1),(4,2),(5,1)\}$,(6,1),(6,2)}	(d) $\{(4,1),(4,2),(6,1)\}$,(6,2),(6,3)}				
15.	Consider the graph sl	nown.						
		. 11 .1. 1	0	y-axis				
	(a) Greatest integer fi	bresented by this graph	./ +1					
	(b) Modulus function		← 0	•				
	(c) Signum function			$\phi -1$ x-axis				
	(d) Logarithmic func	tion						
				¥				
16.	$\cos^2 x + \cos^2 (x + 120)$	$^{\circ}) + \cos^2(x - 120^{\circ}) =$						
	$(3)^{3}$	(b) 1	(c) 3	(d) 3				
	(a) $\frac{1}{2}$	$(0)\frac{1}{2}$		$(u) -\frac{1}{2}$				
17.	If U is a universal set	and A is a non-empty	set then, which of the	following is not true?				
10	(a) $A \cup U = A$	(b) $A \cup U = U$	(c) $A \cap U = A$	(d) $A \cap A' = \phi$				
18.	If U is a universal set (a) $A + U = A$	and A is a non-empty (b) $A + A' = A$	set then, which of the (c) $\Lambda \odot \Lambda' = \phi$	following is true? (d) $\Lambda \circ U' = \Lambda$				
10	(a) $A \cup U = A$ Which one of the fall	(0) $A \bigcirc A = A$	(c) $A \cap A = \psi$	(d) $A \cap O = A$				
19.	(a) $\{1, 2, 3\}, \{4, 5\}$	(b) $\{1, 2\}, \{3, 4, 5\}$	(c) $\{1, 3, 5\}, \{2, 4\}$	(d) $\{1, 2, 3\}, \{3, 4, 5\}$				
20	Let $A = \{x : x \in N \mid x\}$	$(2^{2} + x - 2 = 0)$ Then the	cardinal number of se	at A is				
20.	(a) 2	(b) 0	(c) 1	(d) {1}				
21.	For the set A as given	n in 20 , what is the tota	l number of subsets of	(2) (1) A?				
	(a) 2	(b) 0	(c) 1	(d) 4				
22.	For $A = \{1, 2, 3, 4, 5\},\$	$B = \{4, 5, 6, 7\}, A \cup B = \{4, 5, 6, 7\}$	⇒ ZO.					
	(a) {4,5}	(b) $\{1, 2, 3, 4, 5, 6, 7\}$	(c) { } i.e., \$	(d) $\{1, 2, 3, 6, 7\}$				
23.	For $A = \{1, 2\}, B = \{3, 3\}$	$,4,5,6,7\}, A \cap B =$	00					
	(a) {4,5}	(b) {1,2,3,4,5,6,7}	(c) { } i.e., ϕ	(d) $\{1, 2, 3, 6, 7\}$				
24.	For $A = \{1, 2, 3, 4\}, B$	$= \{4, 5, 6\}, A - B =$						
	(a) {4,5,6}	(b) {1,2,3}	(c) {4}	(d) $\{5,6\}$				
25.	If $\sin x = -\frac{1}{2}$, $x \in (\pi)$	$\left(\frac{3\pi}{2}\right)$ then, tan x =						
	3 (2)		1				
	(a) $-2\sqrt{2}$	(b) $2\sqrt{2}$	(c) $-\sqrt{2}$	(d) $\frac{1}{2\sqrt{2}}$				
26	Let $n(\Lambda) = 2 n(\mathbf{P}) =$	$(\Lambda \cap \mathbf{P}) = 2$ Then	$m(\Lambda \cup D) =$	$2\sqrt{2}$				
20.	Let $\Pi(A) = 5$, $\Pi(B) =$	(b) 7 $(A \cap D) = 2$. Then	$I II(A \cup B) =$	0 (b)				
27.	For the sets $A = \{2, 3\}$	$B = \{4, 5, 6\}$, the tota	l number of functions	from A to B will be				
_,.	(a) 8	(b) 9	(c) 512	(d) 64				
20	$\frac{1}{2}$		(-)					
28.	Domain of $f(x) = \frac{1}{\lfloor x \rfloor}$ is given by $x \in$							
	(a) \mathbb{R} (Real nos.)	(b) Z	(c) $\mathbb{R} - Z$	(d) $\mathbb{R} - [0,1)$				
29	$f(x) = \sqrt{ x - x}$ is def	ined when $x \in$						
	χ							

MATHEMATICIA By O.P. GUPTA : A New Approach in Mathematics

🗏 theopgupta.com

	(a) \mathbb{R} (Real nos.)	(b) Z	(c) $\mathbb{R} - \mathbb{R}^-$	(d) $\mathbb{R} - \{0\}$		
30.	For $f(x) = - x $, the r					
	(a) \mathbb{R} (Real nos.)	(b) [0,∞)	(c) $\mathbb{R} - \mathbb{R}^-$	(d) $(-\infty, 0]$		
31.	Range of $f(x) = \sqrt{25}$	$-x^2$ is				
	(a) \mathbb{R} (Real nos.)	(b) [0,5)	(c) [0, 5]	(d) (0,5]		
32.	$\sin(22.5^{\circ}) =$					
	(a) $\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$	(b) $\sqrt{\frac{\sqrt{2}-1}{2}}$	(c) $\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$	(d) $\sqrt{\frac{1-\sqrt{2}}{2\sqrt{2}}}$		
33.	Domain of $f(x) = \frac{ x }{1+1}$	$\frac{ \mathbf{x} }{ \mathbf{x} }$ is				
	(a) \mathbb{R} (Real nos.)	(b) $\mathbb{R} - \{-1\}$	(c) $\mathbb{R} - \{0\}$	(d) $\mathbb{R} - \mathbb{R}^-$		
34.	For $U = \{1, 2, 3, \dots, 9\}$,	$A = \{1, 3, 5, 7, 8\}, A' =$				
	(a) $\{2,4,6,8\}$	(b) $\{2, 4, 6, 8, 9\}$	(c) $\{2,3,4,6,8\}$	(d) $\{2,4,6,9\}$		
35.	If $\tan 2x = \frac{2\tan x}{m - \tan^2 x}$	- then, $m =$	10-			
	(a) 2	(b) –1	(c) 1	(d) –2		
36.	If $z = \frac{1-i}{i}$ then, \overline{z} equations	quals		\sim		
	(a) -1-i	(b) -1+i	(c) 1+i	(d) 1-i		
37.	7. An angle 225°, in radian equals					
	(a) $\frac{3\pi}{4}$	(b) $-\frac{5\pi}{4}$	(c) $\frac{5\pi}{4}$	(d) $-\frac{3\pi}{4}$		
38.	Let A = {1,2,3}, B = {4,5,6}. Let S: A \rightarrow B, where S = {(1,4), (2,5), (3,6)}. Then, S is					
	(a) a relation only		(b) a function only			
• •	(c) a relation and function both		(d) neither relation nor function			
39.	If $z = -1 - \sqrt{3}i$ then,	$\arg(z) =$	い	5		
	(a) $-\frac{\pi}{3}$	(b) $-\frac{2\pi}{3}$	(c) $\frac{\pi}{3}$	(d) $-\frac{5\pi}{6}$		
40.	Additive inverse of z	= -1 + i is given by				
	(a) $-1-i$	(b) 1-i	(c) $1+i$	(d) $0 - i$		
L 11	· / /• ¬		$\Delta (1) \Delta (5)$			

Followings are Assertion-Reason based questions (from Q41 - Q45).

Read the following statements carefully to mark the correct option out of the options given below.

- (a) Assertion (A) is true, Reason (R) is true; Reason (R) is a correct explanation for Assertion (A).
- (b) Assertion (A) is true, Reason (R) is true; Reason (R) is not a correct explanation for Assertion (A).
- (c) Assertion (A) is true, Reason (R) is false.
- (d) Assertion (A) is false, Reason (R) is true.
- 41. **Assertion (A)**: ${}^{10}C_3 = 120$.

Reason (R): ${}^{n}C_{r} = \frac{n!}{(n-r)!}$.

42. **Assertion (A) :** A total of 360 words can be generated using all the letters of BHARAT, (with or without meaning).

Reason (R) : Total no. of Combinations of n different things taken r at a time is given by ${}^{n}C_{r}$.

Practice Paper for XI ^O Maths (041)

43. Assertion (A): Third term in $\left(\frac{x}{3} + \frac{1}{x}\right)^5$, $x \neq 0$ is given by $\frac{10x}{27}$.

Reason (R) : In the binomial $(a+b)^n$, $T_{r+1} = {}^nC_r b^r a^{n-r}$.

44. Assertion (A): For $2(2x+3)-10 \le 6(x-2)$, $x \in [4,\infty)$.

Reason (R) : For
$$-5 \le \frac{2-3x}{4} \le 9$$
, $x \in \left[-\frac{34}{3}, \frac{22}{3}\right]$

45. Assertion (A) : If $\cos x = -\frac{1}{3}$, then $\cos \frac{x}{2} = -\frac{1}{\sqrt{3}}$, when $x \in III$ Quadrant.

Reason (R) : $\cos 2A = 2\cos^2 A - 1$.

Solutions has been uploaded on YouTube Channel! Keep subscribed on YouTube.com/MathematiciaByOPGupta

This document contains MCQs for Mathematics (041) of class XI. Answers / Solutions is available on **YouTube channel – Mathematicia By O.P. Gupta** You can **share this document** with other students!

>>> With a lot of Blessings!

O.P. GUPTA Author & Math Mentor Indira Award Winner

 The O.P. Gupta Advanced Math Classes
Think Academy, Near Dhansa Bus Stand Metro Station Gate No.3, Najafgarh, Delhi

S Telegram / WhatsApp : +919650350480

YouTube.com/MathematiciaByOPGupta

Exclusive coaching for Maths (041) By O.P. GUPTA CBSE XII CBSE XI CUET JEE - MAIN NDA

MATHEMATICIA By O.P. GUPTA : A New Approach in Mathematics